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Abstract
Spectral determinants have proved to be valuable tools for resumming the
periodic orbits in the Gutzwiller trace formula of chaotic systems. We
investigate these tools in the context of integrable systems to which these
techniques have not been previously applied. Our specific model is a
stroboscopic map of an integrable Hamiltonian system with quadratic action
dependence, for which each stage of the semiclassical approximation can be
controlled. It is found that large errors occur in the semiclassical traces due
to edge corrections which may be neglected if the eigenvalues are obtained by
Fourier transformation over the long time dynamics. However, these errors
cause serious harm to the spectral approximations of an integrable system
obtained via the spectral determinants. The symmetry property of the spectral
determinant does not generally alleviate the error, since it sometimes sheds a
pair of eigenvalues from the unit circle. By taking into account the leading-
order asymptotics of the edge corrections, the spectral determinant method
makes a significant recovery.

PACS numbers: 03.65.Sq, 02.30.Ik, 02.30.Lt

1. Introduction

It has been generally accepted that spectral determinants, or zeta-functions, provide optimal
semiclassical estimates of the individual energy levels of classically chaotic systems [1–3].
These resummations of the periodic orbits in the Gutzwiller trace formula [4, 5], originally
developed for time-independent systems, may be obtained in a variety of ways. The
formulation of Berry and Keating [6] relies explicitly on the instability of the periodic orbits in
such a way as to give an expression that does not depend on a sharp cut-off of the orbit periods.
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In contrast, Bogomolny’s approach [7, 8] reduces the problem to the quantization of a map
over a Poincaré surface of section, without making any assumption about the nature of the
classical motion. On the one hand, the Poincaré section itself is bounded if the constant energy
surface is compact. The limited area of the section, which corresponds to a finite dimension
of the Hilbert space, then leads to a sharp cut-off in the period of the orbits. The recent paper
of Eckhart and Smilansky [9] also works with a quantum map in a bounded region, but this is
obtained stroboscopically instead of with a Poincaré section.

The classical motion of integrable systems is restricted to invariant tori, which determine
closed invariant curves (also tori) of the Poincaré mapping. For integrable systems, Berry and
Tabor [10] established the equivalence of the Gutzwiller trace formula to the general forms
of Bohr–Sommerfeld quantization. The latter method is evidently the most efficient for the
calculation of individual levels. Nevertheless the exercise of showing the equivalence of both
methods had the merit of clarifying the role of periodic orbits (forming continuous tori for
higher dimensional systems) in the density of states. Indeed it raises an important question:
the Berry–Tabor equivalence involves the complete set of periodic orbits, so how might one
obtain correct energy levels from the resummation of a finite selection of short orbits?

The purpose of this paper is to examine approximations for the spectra of simple integrable
systems based on resummation of periodic orbit tori. Contrary to chaotic systems, there is no
exponential proliferation of periodic orbits with increasing period. On the other hand, there
is no in-built level repulsion, a characteristic of chaotic systems. Therefore, it is arguable
whether our numerical results can be extrapolated to chaotic systems, or to the even more
interesting case of generic nonintegrable systems. Yet, it is only for integrable systems that
all the stages of the semiclassical approximations, including the resummation can be entirely
controlled and compared. In particular, we will focus on the effect of introducing boundaries
that do not interfere with the local classical tori, but which require edge corrections beyond
the standard semiclassical theory. For simplicity, consider such a system with a single degree
of freedom. For the classical Hamiltonian H(I), where (I, θ) are the action-angle variables
[11], the discrete Bohr–Sommerfeld levels are

En = H
(
h̄

(
n + 1

2

))
(1)

labelled by the integer n. Actually, it suffices to consider a case for which the action variables
are those of the harmonic oscillator

I = 1
2 (p2 + q2) (2)

rendering the semiclassical approximation of (1) exact. It is important to point out that
large-n states are well approximated by (1) even for a general nonquadratic dependence of the
Hamiltonian on the phase space variables. (The constant term 1/2 in (2) still holds, as long as
the topology of the energy level is not altered by the higher order terms.) The main question
is how well a spectral determinant method converges to the eigenvalues En in this case.

A conceptually clean approach to answering this question follows in the spirit of Creagh
[12], who applied an extension of resummation methods [13, 14] to the perturbed cat maps. He
found worsening errors in the semiclassical trace formula as the perturbation brought the map
out of the hyperbolic regime, where it does not become integrable. Here, since I is a constant of
the classical evolution, our consideration can be limited to a ring I− < I < I+, thus obtaining
a finite phase space and hence a finite Hilbert space of dimension N = {(I+ − I−)/h̄}, where
{·} denotes the integer part. A stroboscopic map of period τ can be defined and quantized in
such a way that the dynamics is determined by the evolution operator

UN =
N+∑

n=N−

exp

(
− i

h̄
Enτ

)
|n〉〈n|. (3)
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The quantity h̄N− (h̄N+) is the smallest (largest) quantized action greater (smaller) than I−
(I+) and |n〉 are the eigenstates. It is important to note that although the quantization of a map
between I− and I+ is unique, the reverse classical correspondence to (3) is not. Indeed, we may
shift I± between adjacent Bohr quantized actions and still obtain the same evolution operator.
This nonuniqueness even holds within the restriction that the total area of the classical maps,
2π(I+ −I−), be a multiple of 2πh̄. This constraint of an exact Weyl rule is necessary for torus
maps, but not for maps on the cylinder, to which our system is equivalent. Such a restriction is
also absent for the Bogomolny section, depending on a continuous parameter, so we will not
impose it here either. In any case, the multiplicity of classical maps corresponding to the same
quantum evolution implies that there must be a corresponding variation of edge corrections
for the different allowed choices of I±.

The definition of the spectral determinant as det(1 − zUN) gives an Nth-order polynomial
in the variable z and the roots of the characteristic equation

PN(z) ≡ det(1 − zUN) = 0 (4)

are just

zn = exp

(
i

h̄
Enτ

)
. (5)

Thus, knowledge of the phases φn of the zeros of the spectral determinant, or zeta-function,
determines the eigenvalues of the stroboscopic map within the ring. These coincide with a
subset of the eigenvalues of the original system possessing an infinite Hilbert space.

The eigenenergies of the original system can be inferred from

En = h̄

τ
(φn + 2kπ). (6)

The determination is unique if, for the energy interval of the ring (E−, E+) = (E(I−), E(I+)),
the constraint

(E+ − E−)
τ

h̄
� 2π (7)

is respected. This scheme for locating eigenvalues of the original Hamiltonian resembles
that of [9], but our objective of comparing semiclassical methods can be achieved also in the
context of the continuous dynamical system confined to the ring, or even the discrete map
defined by (3).

In the semiclassical limit, Tr
(
Ul

N

)
is expressed as a sum over periodic orbits of period l

for the classical stroboscopic map generated by the Hamiltonian H(I) in the time τ within the
ring. These orbits, with repetition number m and action Im,l , such that

τ
dH(I)

dI
= 2πm

l
(8)

define continuous curves, unless I = 0. To simplify the treatment, we consider I− > 0, which
excludes the isolated periodic orbit at the origin.

Note that the periodic orbits of the stroboscopic map comprise only a small subset of those
of the original system with continuous time. Indeed, all the orbits of the latter are periodic
whereas only those full orbits with periods that are rationally related to the stroboscopic time,
τ , are periodic in the map. The map resembles a Poincaré map of an integrable system with
two degrees of freedom in the sense that all orbits lie on invariant curves, but the curves made
up of periodic orbits form a dense set of zero measure.

The semiclassical form for the spectral determinant is obtained from the expression

det(1 − zUN) = exp

[
−

∞∑
l=1

zl

l
Tr

(
Ul

N

)]
. (9)
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Even though the series only converges for |z| < 1, it is possible to follow [13] in noting that the
Taylor expansion of the exponential in equation (9) can be identified with the finite expansion
of the spectral determinant (4):

PN(z) = 1 + c1z + c2z
2 · · · + cNzN (10)

where the coefficients are given by the following recurrence relation:

ck = −1

k

k∑
l=1

ck−l Tr
(
Ul

N

)
. (11)

In this way the periodic orbits up to period l = N determine, in principle, all the eigenvalues
of UN .

A further reduction of the period of the orbits used in the semiclassical spectral determinant
results from the symmetry relation for the coefficients [7]

ck = (−1)N det(UN)cN−k. (12)

The coefficients containing traces for long iteration times, l > N/2, can be obtained from
the coefficients with l < N/2. Hence, only the orbits of period l < N/2 are needed. This
is a particularly simple example of ‘bootstrapping’ [15] resulting from the finiteness of the
Hilbert space. For chaotic systems, the symmetry (12) is a fundamental tool because the
number of periodic orbits increases exponentially with l. The slower growth of the number of
periodic orbits for integrable systems allows us to verify the effects of symmetrization within
the semiclassical theory itself.

In section 2, we derive the semiclassical formula for Tr(Ul) of the integrable map defined
in (3). It will then become clear that edge corrections to the periodic orbit sum cannot be
neglected in this case. Indeed these are the only corrections for the particular model that we
study numerically in section 4. Though the absence of edge corrections severely affects the
spectral determinant, which has a natural cut-off in time, they cancel out in the Berry–Tabor
formula as discussed in section 3.

2. The semiclassical trace

Relation (1) for the eigenvalues becomes exact in the case of the harmonic oscillator actions (2).
Likewise, (3) represents an exact propagator in the number basis for any unimodular choice
of coefficients of |n〉〈n|. However, the initial semiclassical approximation is to consider the
action-angle variables (I, θ) as appropriate conjugate variables for quantization. From the
action representation of the operator Ul

N , the lth power of UN in (3), the matrix elements in
the angle representation turn out to be

〈θ |Ul
N |θ ′〉 = 1

2π

N+∑
n=N−

exp

{
i

[(
n +

1

2

)
(θ − θ ′) − l

τEn

h̄

]}
(13)

where we used 〈θ |n〉 = e−i(n+ 1
2 )θ

/√
2π .

The Poisson transformation is now applied, changing to the continuous action variable I,
so that E is interpolated by H(I) as in (1). This results in

〈θ |Ul
N |θ ′〉 = 1

2πh̄

∞∑
m=−∞

(−1)m
∫ I+

I−
dI exp

{
i

h̄
[I (θ − θ ′) + 2πm − lτH(I)]

}
(14)

which is exactly equivalent to (13). Tracing over the angle variables gives

Tr
(
Ul

N

) = 1

h̄

∞∑
m=−∞

(−1)m
∫ I+

I−
dI exp

{ i

h̄
[2πmI − lτH(I)]

}
. (15)
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The exponential in the integrand of (15) oscillates rapidly in the semiclassical limit, and the
largest contributions to the trace, of order h̄1/2, come from the regions near the stationary
phase points at

lτ
dH(I)

dI
− 2πm = 0 (16)

which is the same condition as that given by (8) for the periodic orbits of the classical
stroboscopic map. The stationary phase evaluation of the trace is therefore tied to the periodic
orbits with actions Im,l .

The periodic orbits can now be ordered by increasing period, l. Equation (16) also sets
the range of the repetitions m, within (Ml− ≡ ml(I−),Ml+ ≡ ml(I+)) for the period l orbit, if
dH/dI is monotonic. The frequencies, ω = dH(I)/dI in the limited range of action (I−, I+)

are also bounded. Thus, the number of periodic orbits in this range increases linearly with l.
The full stationary phase evaluation of (15) becomes

Tr
(
Ul

N

) =
Ml+∑

m=Ml−

(−1)m

 2π

h̄lτ
∣∣ d2H(I)

dI 2

∣∣
Im,l

1/2

exp

{
i

h̄

[
2πmIm,l − lτH(Im,l) − h̄

π

4

]}
. (17)

Not only are the stationary points of the integration specified by the action variables of the
periodic orbits, but the phase of each contribution is given by the full action in units of h̄,

Sm,l =
∫ lτ

0
dt[pq̇ − H ] (18)

except for the geometric ‘Maslov term’, π/4.
Typically, the contributions to the trace from the endpoints I± to the integrals in (15) are

only of order h̄. However, note that they cannot be separated from the stationary phase term
corresponding to a periodic orbit which lies very close to the boundary. In fact, by varying
the parameters of the system and l, essentially all the stationary phase points pass close to the
boundaries. The edge corrections can be obtained as a uniform approximation [9], but this
erases the simplicity of the periodic orbit expression for the trace. It is shown in the following
section that the limitation of the allowed phase space to the ring (I−, I+) in no way hinders
the Berry–Tabor equivalence.

3. The Berry–Tabor equivalence

A version of the Gutzwiller trace formula that is appropriate to an integrable map is simply
obtained by complex Laplace transforming the traces of Ul

N in the discrete time l:
∞∑
l=0

eilθ Tr
(
Ul

N

) = Tr
1

1 − eiθUN

=
∑

n

1

1 − exp[i(θ − lτEn)]
. (19)

Here, the eigenvalues of the map are considered as poles of the resolvent (1 − zUN)−1 instead
of zeros of det(1 − zUN).

Though the infinite series of traces in (19) appears to be a cumbersome alternative to
evaluating the finite determinant, Poisson transformation to the periodic orbit expression can
be performed for the semiclassical resolvent

Tr
1

1 − eiθUN

=
∑
m,l

(−1)m

 2π

h̄lτ
∣∣ d2H(I)

dI 2

∣∣
Im,l

1/2

× exp

(
i

h̄

[
h̄lθ + 2πmIm,l − lτH(Im,l) − h̄

π

4

])
. (20)
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Interpolating the discrete time l again by the continuous time s gives

Tr
1

1 − eiθUN

=
∑
m,k

(−1)m

 2π

h̄τ l
∣∣ d2H(I)

dI 2

∣∣
Im,s

1/2

×
∫ ∞

0
ds exp

{
i

h̄

[
h̄sθ + 2π(mIm,s + h̄ks) − sτH(Im,s) − h̄

π

4

]}
. (21)

The stationary phase points, sm,k(θ), of the integrals in equation (21) are given by

dSm,s

ds
+ h̄(θ + 2πk) = 0 (22)

where Sm,s is the full action of the orbit singled out by condition (16). It is important to note
that, while in (16), the stationary phase condition defined a periodic orbit of integer period l for
the τ -stroboscopic map, now l has been replaced by the continuous variable s. This condition
can be reinterpreted in two ways: (i) orbits are picked that are no longer closed, or (ii) the
selected orbit is still periodic, but for a different τ (θ) = ls/m. In either case,

dSm,s

ds
= τ

dSm,s

dt
= τEm,s , (23)

where the energy of the selected orbit appears in the last equality. Thus, the resulting phase of
each integral is given by the reduced action for the orbits of quasi-energy h̄(θ + 2πk)/τ . The
stationary evaluation of the resolvent is

Tr
1

1 − eiθUN

≈
∑
k,m

s1,k(θ) gt exp

[
i

h̄
2πmI

(
h̄

τ
(θ + 2πk)

)
+ iπm

]
(24)

where I (E) is the local inverse of H(I). Thus, if h̄/τ is chosen such that the variation of
τH(I)/h̄ does not exceed 2π for I in (I−, I+), there are at most a few orbits contributing to
the semiclassical resolvent for each value of θ . Since the repetitions must still be summed,
the interpretation (ii) for (22) as a periodic orbit of another stroboscopic map is perhaps more
appealing.

The condition for the resolvent to be singular is that all the m repetitions are exactly in
phase

I

(
h̄

τ
(θ + 2πk)

)
=

(
j − 1

2

)
π (25)

which is just the initial Bohr–Sommerfeld quantization. Thus, the periodic orbit evaluation
of the map resolvent retrieves the full Berry–Tabor equivalence without any need to consider
boundary corrections to the trace. The reason why this works is that the singularities of
the resolvent only manifest themselves by summing the periodic contributions for very long
times, or multiple repetitions. For these contributions there is an effective increase of the
large parameter of the stationary phase evaluation of Tr

(
Ul

N

)
given by (17). The integrals are

then dominated by a very narrow region near each periodic orbit, so that the boundary can be
ignored for the high repetition of an orbit even if it lies almost at the edge.

The evaluation of the spectral determinant may be regarded as a resummation of the
semiclassical sum for the poles of the resolvent, such that the (discrete) time of the contributing
periodic orbits is cut off by the dimension of the finite Hilbert space. We show in the next
section that the error in the traces of the propagatordue to the edge corrections can be magnified
by the spectral determinant.
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4. Model Hamiltonian

To illustrate the calculation of the spectral determinant, we choose the simplest Hamiltonian
that is a nonlinear function of the action, namely

H(I) = 1
2 (I − I)2 (I � 0). (26)

The periodic orbit condition (8) then reduces to

Im,l = I + 2π
m

lτ
(27)

and the stationary phase evaluation of the trace assumes the explicit form

Tr
(
Ul

N

) ≈
(

2π

h̄lτ

)1/2

e−iπ/4
∑
m

(−1)m exp

[
i

h̄
2πm

(
I +

πm

lτ

)]
. (28)

For the case where the parameter I = h̄(n + 1/2) (i.e. one of the quantized actions),
Tr

(
Ul

N

)
reduces to a ‘curlicue’. These recursively spiralling patterns in the complex plane

were shown by Berry and Goldberg [16] to have quite diverse characteristics depending on
τ/h̄, in the limit N → ∞. This may also be the case for non-quantized I.

Two essentially different regions of the eigenspectrum can be studied. In case (i), I > 0
and I± = I ± √

2E < 2I. The energy levels there originate on two different branches of
H(I), so there may be near degeneracies. This is a similar situation to that expected for an
integrable system with more degrees of freedom (see e.g. [11]). Otherwise, in case (ii), both
I+ and I− > 2I, so that a single branch of the H(I) curve is sampled. The energy levels
are then quite regularly spaced with approximate separation of Planck’s constant times the
average dH/dI for this energy interval. By choosing E± to satisfy condition (7), we also
guarantee the regularity of the spectrum of UN itself.

4.1. Case (i)

Let us first examine the semiclassical approximations to Tr(UN) for a single period. Note
that the stationary phase approximation to the integrals in (15) would be exact for our simple
model that is quadratic in action if the limits could be extended to ±∞. In other words,
the edge corrections are the only deviation of the periodic orbit approximation with respect to
the exact trace. These corrections are certainly not negligible for stroboscopic parameters such
that a periodic orbit is close to one of the edges. The simplest asymptotic edge corrections,
as deduced in [9], are presented in the appendix. The computed error due to the edges is
displayed in figure 1. Here we let the time t vary and study Tr(UN) as a function of t/tH,
where tH = 2π�N/E is the Heisenberg time. As the time is increased the integrand on the
lhs of equation (15) has more stationary phase points. The sudden jump in the semiclassical
trace in figure 1(a) is due to the following. For small values of t/tH there is just a single
stationary phase point with m = 0. Going beyond t/tH ≈ 0.25 all |m| � 1 become stationary
phase points. (It is near such transition points that the semiclassical approximation is worse.)
This situation repeats itself regularly with increasing t/tH adding more stationary points to the
sum (28). As seen in figure 1(a), the semiclassical trace as given by (28) is not an accurate
approximation to the exact Tr(UN). The suppression of the edge correction by means of a
cosine weighted trace, namely

Tr(ŨN ) = Tr

[
UN cos

(
πH(I)

2E

)]
(29)

improves the agreement enormously, as shown in figure 1(b). Our calculations have been
performed for case h̄ = 0.01, E = 30.457 169 4, and I = 20.348 957 3 giving N = 1521.
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Figure 1. Comparison between the exact (dotted lines) and the semiclassical values (solid lines) of
Re[Tr(UN)] as a function of t/tH for (a) unweighted and (b) cosine weighted trace. The behaviour
is similar for Im[Tr(UN)] and therefore not shown here.

We now return to the original programme of obtaining the eigenvalues of UN , defined for
a fixed τ , by resumming periodic orbits. The first step is to calculate the traces of Ul

N . The
coefficient of the characteristic polynomial are then easily computed by (11). The roots of
the resulting polynomial are obtained numerically. The precision in finding the roots limits
this method to polynomials with N � 50. We chose the model Hamiltonian parameters
accordingly.

To illustrate case (i), we take the parameters E and I to be the same as above and h̄ = 0.35,
which gives N = 48. Figure 2 displays the real and imaginary parts of Tr

(
Ul

N

)
for l � N

using the semiclassical expression (28) contrasted with their exact values. As expected, the
semiclassical approximation works reasonably well for the lowest values of l and gives very
poor results for the largest ones. It is worth noting that similar calculations with the addition of
an imaginary part to the time in the trace (17) show a dramatic improvement in the agreement
between the semiclassical and the exact traces. This is further evidence that the differences
are due to edge corrections and not to numerical inaccuracies.

Next, we calculate the coefficients ck of the characteristic polynomial (4) using the
recursion relation (11). The symmetry relation (12) allows us to employ only traces
corresponding to times shorter than τH/2. Besides the traces, the determinant itself is
also needed. In the shown examples we use the exact quantum mechanical one. We first
verified that a semiclassical approximation for det(Ul

N ), which is somewhat more consistent,
gives qualitatively the same results. In figure 3 we compare the exact coefficients ck with
those resulting from the semiclassical traces, with and without symmetrization. To better
illustrate the whole range of ck we show a situation where N = 28, corresponding to
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Figure 2. Comparison between the exact (white histograms) and the semiclassical (grey
histograms) values of (a) Im[Tr(Ul

N )] and (b) Re[Tr(Ul
N )] as a function of l for N = 48.

h̄ = 1.0, E = 100.1234, and I = 41.2345. As before, the semiclassical approximation
works well for the low k coefficients (k < 5) and, obviously, also for the corresponding higher
k’s if we impose the symmetry (12). For the remaining coefficients, the agreement with the
exact ck is poor.

Finally we arrive at the eigenvalues of Ul
N . Figure 4 shows the results for h̄ = 0.35, E =

30.457 169 4, and I = 20.348 957 3, which is a rather typical situation. The exact roots of
the characteristic polynomial lie on the unit circle, as they should. The standard semiclassical
approximation destroys unitarity and the roots of the corresponding characteristic polynomial
are no longer restricted to the unit circle. The enforcement of the symmetry (12) makes
|det(U)| = 1. As a consequence the roots either lie exactly on the unit circle, or appear in
pairs, one inside and the other outside the circle. More precisely, the self-inversive symmetry
of the characteristic polynomial renders a symmetry in its zeros: if zk is a root then 1/z∗

k is also
a root. Indeed, it has been shown by Bogomolny et al [17] that on average only about 57%
of the roots of a random symmetrical polynomial lie on the unit circle. Unfortunately, upon
symmetrization individual roots do not necessarily come closer to the exact ones, as compared
with the standard procedure. Figure 4 shows that they can even be pushed out, unless the
standard semiclassical roots are already close to the exact ones, in which case symmetrization
tends to improve the accuracy. Unfortunately this behaviour is not very systematic.

4.2. Case (ii)

We switch now to case (ii) and consider the situation where the energy E > I2/2, or
equivalently, both I+ and I− > 2I. As mentioned before, in this situation the levels are
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Figure 3. Comparison between the exact (open circles), the semiclassical (filled squares) and the
symmetrized semiclassical (open squares) values of (a) Im(ck) and (b) Re(ck) as a function of k
for N = 28.
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Figure 4. Comparison between the exact (asterisks), the semiclassical (open circles) and the
symmetrized semiclassical (open squares) roots zi of the characteristic polynomial for N = 48.

almost equally spaced with separation of h̄dH/dI . From the semiclassical point of view, the
most important distinction to case (i) is the absence of the m = 0 orbit. Actually, for our
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Figure 5. Comparison between the exact (crosses), the semiclassical (open circles), the ‘bottom’
symmetrized semiclassical (open squares) and the ‘top’ symmetrized semiclassical (open triangles)
roots zi of the characteristic polynomial for N = 48. Panel (a) displays all roots, while (b) is a
scale blow-up of the same data showing that the nice agreement is only apparent.

simple model there will be no tori with orbits of period l < N/2 in case (ii). Indeed, the
fraction, f , of zero traces in the semiclassical approximation is easily seen to be

f = 1

2

√
E+ +

√
E−√

E+ − √
E−

. (30)

The optimum of f ≈ N/2 is approached for E− ≈ 0, which implies I � 0, so we choose
h̄ = 1.0, I = −1.034 895 73 with E− = 0.265 678 and E+ = 1250.0, which corresponds
to N = 48. Keeping τ as defined by (7) gives Tr

(
Ul

N

) = 0 for l � 24. The results are
summarized by figure 5.

As in case (i) the simple semiclassical approximation shows roots outside the unit circle.
The standard semiclassical improvement by symmetrization (‘bottom up symmetrization’)
erases all system information, since there are only nonzero traces for long times. Indeed, the
spectral determinant (10) reduces to

PN(z) = 1 + (−1)N det(UN) zN . (31)

Instead, one can maximize the semiclassical information by symmetrizing the lower
coefficients in PN(z) from the higher ck’s, containing the traces with long orbits (‘top down
symmetrization’). However, the final result is no better than the one without symmetrizing at
all.

By shifting the parameters in case (ii) so that H(I) becomes almost linear, within
the interval (I−, I+), the agreement between the different approaches becomes much more
reasonable than in figure 5. However, if one recalls that the mean level spacing is known
and the levels are almost equally spaced, some caution is then required. The exact traces
lead to a characteristic polynomial with self-inversive symmetry. For small values of l, where
there is no stationary phase and the semiclassical traces are zero, the (modulus of) exact
traces are small compared to unit. On the other hand, we observe that, for large l values,
the semiclassical approximation fails to reproduce the exact traces with the same precision.
Thus, the best semiclassical agreement corresponds surprisingly to the case where all traces
are taken as zero (bottom up). As shown in figure 5, the top down symmetrization is superior
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to the standard procedure only where the eigenvalues are sufficiently accurate. It then brings
most of the roots back to the unit circle. However, since it employs some inaccurate large l
traces, (top down) symmetrization also produces pairs of roots lying at opposite sides of the
unit circle, such as in case (i).

5. Conclusions

The main assets of using spectral determinants to resum the periodic orbits in the Gutzwiller
trace formula for chaotic quantum maps are: (a) the requirement of unitarity is partially
incorporated, (b) the necessity of handling very long (and exponentially many) periodic orbits
with periods larger than τH /2 is eliminated and (c) the method produces isolated levels rather
than a smoothed density of states. Nevertheless, the method remains problematic in general,
because of the necessity of accounting for a formidable number of periodic orbits in the
semiclassical limit, which is a daunting task from the classical point of view.

Even though semiclassical spectra of integrable systems are obtained most efficiently by
generalizations of the Bohr–Sommerfeld rules, one could expect that spectral determinants
would still be more successful tools for integrable spectra than the trace formula, since they
take some account of unitarity and here the classical periodic orbit structure is much simpler
than for chaotic systems. Our study shows that this is not the case.

We find large errors in the semiclassical traces, which could, in principle, be completely
fixed by accounting for edge corrections. Indeed, this has been verified in the case of the
first-order corrections in the appendix. However, to follow such a path would be at odds
with the spirit of the present work. Rather than solving a trivial model, our purpose was
to assess the efficacy of the spectral determinant, symmetrized or not, as a tool of reducing
the effect of inaccuracies of the semiclassical traces in the calculation of eigenvalues. The
spectrum of our model is exactly known and it allows complete control over each stage of the
approximation. Thus, we have worked solely within a framework that is based on the usual
amplitudes of periodic orbits in the trace formula. Even though our map has been obtained
by looking stroboscopically at a simple system with continuous time and its boundaries are
entirely arbitrary, it is arguable that our results may resemble those for a quantum map that
results by taking a ‘Bogomolny section’ of a Hamiltonian system [7, 8]. The corresponding
classical map must also have a boundary and it will also be integrable, if this is a property of
the original Hamiltonian system.

The errors in the semiclassical traces, discussed in section 4, yield inaccurate coefficients
for the characteristic polynomial, rendering poor approximations for the spectra of integrable
systems. The symmetry property of the spectral determinant does not necessarily lead to
better approximations. Actually in most of the cases studied there is only improvement where
the unsymmetrized eigenvalues were already reasonably accurate. We can now understand
this to account for the encouraging results obtained by Creagh [12] for the perturbed cat
map. Even though the exact eigenvalues are not determined semiclassically as in our case,
his system lies very close to the linear map, where the periodic orbit traces are exact, so
that the symmetrization always fixes the eigenvalues on the unit circle. In contrast, if one
perturbs the traces in the present integrable system continuously from their exact values to their
semiclassical approximation, the eigenvalues may collide on the unit circle and be knocked off
as a pair, of which we see many examples in our model. We have also tried fitting the spectrum
by treating det UN as a free parameter, without any essential qualitative improvement of the
results.

It is important to mention that the edge correction may be neglected if the eigenvalues
are obtained by Fourier transformation over long times, so that the Berry–Tabor equivalence
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does not need to be ‘dressed’ because of the boundary. Of course, this is not much help if
the system is not integrable. Indeed, an important point concerning the Bogomolny approach
is that no assumption is made about characteristics of the dynamics. Recently, this method
has also been extended successfully to describe the eigenstates themselves of a chaotic system
[18]. The present study of the integrable limit, though not obtained by a surface of section,
suggests that caution may be required in any attempt to extrapolate the general section method
to nearly integrable, or mixed systems. The evidence so far points to serious effects of the
edges if no correction is included. They are not necessary for torus maps [12], so it would be
interesting to pursue the study of integrable resummations, for the spectrum and eigenstates
for edgeless integrable systems.
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Appendix. Edge corrections

The asymptotic form for the edge corrections follows by basic application of the expansion

C(z) + iS(z) =
∫ z

0
dt ei π

2 t2 ∼ ei π
4√
2

sign(z) − iei π
2 z2

πz
+ O(|z|−3) (A.1)

where the first term gives the stationary phase contribution; actually, it is the complex
conjugate with z real which turns out to be needed. The second term is responsible for
the edge corrections. Expanding the argument of the exponential in (15) to quadratic order in
I ′ = I − Im,l for the Hamiltonian in (26), gives

Arg = i

h̄

(
2πmϕ +

2π2m2

lτ
− lτ

2
I ′2

)
. (A.2)

Rescaling the action variable by
√

πh̄/lτ matches the argument of (A.1) with that of (A.2).
After a little algebra, the edge corrections ε take the form

ε ∼ i

lτ

∑
m

exp

{
i

h̄

(
2πmϕ +

2π2m2

lτ

)}[
1

I+
exp

(
−i

lτ

2h̄
I2

+

)
− 1

I−
exp

(
−i

lτ

2h̄
I2

−

)]
. (A.3)

For a discussion of edge corrections for the general case where the phase in the integral (15)
is not quadratic, see [9].
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